
DOCl 3838694
'tEQ-l. 4.
EO 1.4. ':d)
!.L.,8E-jE;

The Strength ofthe Bayes Score*
ByL.I ----l

P. L.

- Ee.sp'-)Il.s· ve

The,sifimage of the Bayes score is derived under the assumption that
the score is n'ormally distributed in right and wrong cases. Asymptot
ically there is a constant scoring rate-·per bit, and that rate is de
termined. TeJ;tleng'ths needed to attain certainsigmases tor common
attacks are calculatedI I II The
authors verify the accuracy of these textlength calculations (given the
ualidity of the underlying mathematical model).

1. INTRODUCTION

It is well known that the, sigmage of the approximate Bayes score
for a regularly stepping machine (number of standard deviations
between right and wrong case 'means) is equal to va TJ.o'2 (a the
exnected value of the snuare of the,nutative bulges T the textlength),

"'Originally 812 Informal No, 283 of 8 September 1970, this paper won Fil"llL Prize in
the 1971 Crypto-Mathematics Institute Essay Contest
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Vfe have not attempted to describe a specific COMSEC sitjIation to
which these results apply for the'following reason,' which· in fact
substantially limits the practical value of our findings:

~c~urate'(within the mathematical'model thatwe hase s¢t~p).

'We'summarize, the as. m' totic results

c,:~~~~~~2~~~~~~~~"""T.="-::::!Itis ::well-known
that the J3ayes score will always require less textlengtp than the

c:::::Jscore:Our resul,tsino,icate that the sigmage obtained from a
textlengtb ofTwith ac::::"Jeore can be attained with a textlength

of approximatelyj. . P'hiS result is especiaU;: important

for prima~y"att~cks where 0: is small 'an,d the requited ~eXUength for
c=Jscoringlllight not' be available,/'The Bayes's~or~ wE,ll never be
cheaper to cornput~ than ther--!score, for the work involved in
calculating the for~:eJ,',on ate~of T is on the'ordet_of,Dather
than T. A .!peasure of::the "efficie'ncy" ofc=J over ,Bayes is thus
~iven by U 2jT, which oUr results show"to be the constaritc:I::]this
factor times the work needed to attain a certain sigmage gives
the work needed to attain a:certain Bayess-i rna e.

'$Gj"l'.-4-,~ ,(,~:)

\E(j,,:,''t:.4. (d:1f.,:L.,. 8,6----:, 3 6

BAYES SCORE

e va lie 0 IS Important. Were it
su stantla y -arger or smaller than I,

(3) We are able to determineC

L..,.,.,.,""'-----------' 0 e text engt s emp oye in the

~

3838j6"9lt
LI----::-:-;".,--_----::----:-_-:-----:----:....,...,,....,-_:--__--,----,- _

(1) We prove for a lower bound model that the expected value of the
factor in the right case has the form Cb T • Our model is essentially an
exact model, for although the score on T bit.'~' is weaker than the Bayes
score on T bits, it is stronger than the Bayes score on T/2 bits.

'Eu 1. 4.
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(5) Weare able to do something else which) I
rI a~d that is to have some control over the accuracy of our estImates.
~thm our model there is an exact answer (given a and T) as to what

tbe expected va,l~u~e'-Jo!!f'-Jt1!h&e.!fa!!&l=lli.IWUllUIJ'-"'=..lli.-"'llli:n...:""'-=IJlJl""'-,
rarily will call E

We are able to convert the statements (4) and (5) into quasi·
practical COMSEC results at the end of section VI, where we list the
tex~rngtbS needk to achieve certain sigmages for both Bayes and

. ith certain assumptions. These tables are presented
wIt five reservatIOns, one of whIch (the thtrd) IS analyzed In sectIon
VII. The signifi.cance of the other four is left as the subject for the
further research. In section VII, where the statements we make in I,
(5) are proved/ it is also proved that the tables of section VI are quite

EO 1.4. 88

The important 'question left unanswered
''-;-hy-:"tLh'"is-p-a--p-e-r-,-an-d"""o-n-e-w"""'h"i"-!ch, it is hoped, will be the sub ·~ct of a

future one. is the extent to which the Bayes score~ I
I ~f, for example, it turTIS out that for nIe Hayes sC,ore one

r II IBlenkinL:J

BAYES I c=J

We think of K l as the observations from a sequence of independent
Bernoulli random variables IXl I. We are then asked to choose between
two conflicting hypotheses, Hn and H 1 , where HI is the hypothesis

that Prob[X, ~ oj ~ 1/2 for all 1 .,; t .,; T. H" is a bit more compli
cated. We define a probability function P on the set Sf (all T-long

89
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se uences from S) so that if Y ~ I Y, I ' ST "good" as S' I in the sense described above. In particular, a common

scoring function, as good as the Bayes factor, isS' 2 (K) = log~ is I (K»,
commonly called the Bayes score. For the all-important example we

described in onr first paragraph, S' ,(K) ~ 2T L 1'( Y) • Prob[K IY],
y,s1"

It would appear from this formula thatS 1 is

'-d""iffi"'·-cu""'lt-t-o-e-va""'lu-a-te-;-th,.-'e computations can be arranged, however, so
that their number is on the order of r 2 hiee [aD

where

3f:CREI91

C-~-J T'.
Ifmany hypotheses Hn are to be tested, the comp~tation'

T

t:" (-I)" f,..

can be:do~e as a'oI,:e-ti.me jObJor. eVeryll/~ r ~ T:'~md the number of
computatIons to evaluate th" Beore is on the order of T. In
some applic'ations thig-Ja<:tor' c n d to log2 7: (5 J and in
others the might reduce the cost of
calculating the scored I

'--....,...-:--:-_:-=-_....,-_,.-' could substantially reduce the cost of
calculating the Bayedactor and score. [6]

A great deal is known. about ther-lscore. It can be shown that
as T becomes large, the score L";--"",,rtally distributed, [7] with
parameters

Ho true, mean = k a T 1!.2

standard deviation
HI true, mean = 0

standard deviation

;E'j 1. 4 .
Ec,', 1. 4.

190

S'
Prob[KIH,]

,(K) ~ Prob[KIH, j

in the following sense: if S 2 is some other scoring function, and
thresholds VI and U2 are chosen for the respective scores so that the
probabilities of type I error = Q, then the probability of a type II error

usingS 1 is less than or equal to that w~ingS 2. What these thresholds
are, and how small the probabilities of type II error then become,
depend on knowledge of the distribution of the scoring function.

The scoring function S' J is commonly called the Bayes factor, since
in order to obtain a posteriori odds in favor of H o from the a priori odds,

one multiplies by~ 1(1 K1 D(in particular~

Prob[H,jKj ~ S', (K) . ProblII,])
Prob[H, [K] ProbfH, ] .

A unique "best" scoring function does not exist. In fact, it is easy to see

that if f is monotonic increasing, the composite of f with S 1 is as

To test which of the two hypotheses is true, a scoring function
(from 81' to the reals) is proposed and a threshold U is set so that Ho is

accepted ifS (K) ;> [J and H, is accepted ifS (K) < U 'There are,
of course, two possibilities for error: we may accept HI; when HI is true
(type II error) or accept HI when Ho is true (type I error), The cele
brated Neyman-Pearson Lemma (see, e.R., [2], p. 65) suggests that the
"best" score is
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numberllis also the number of standard deviations between
theme~~~mthis it is easy to derive the probability of a type

~~i~~~:;}'r a given tvpe I error (because the SCOles ale pgrmallvd]s- I

I E(,1.4.,1
III. Tl-iE UNDILATED RAYES FACTOR E;?:1,L,A . Cd)

OUf intention was to calculate mean and standard deviation of the.
Bayes factor, but this is complicated by the peculiar nature of tQ.e\
probability function P. It is possible that the techniques we employ
in sections IV and V could be modified to apply to the exact Baye'~,

factor, but the calculations would certainly be more cumbersome:\
For this reason we propose a fourth and fifth score, which we shall
define shortly. We do not expect that these scores should ever be
calculated for an actual key stream and hypothesis Ho , for the work
would be comparable to the work in calculating the exact Bayes factor,
and we know with certainty that the exact Bayes factor is the better
score;howev€r,_ ~_he_ ~~?r~s__Which we will introduce are closer in spirit
to the Bayes score than is the--c=Jscore, and we will be at least
partially successful in calculating their means and variances.

Qur notatIOn IS awkward in that the second usage of m depends on the
Y currently being summed over, but the typist has already been over
-wor}{._~~_and the meaning of m here and later ShOllld always be cleal
from contextl . This suggests that

:,":,e define a new score S4 by

·.«1~~_
whIch we ca~l thec:::::Jiayes factor, and

S dK) ~ log, S .(K),

thec::::::JBayes sc~-re, S ~ is intuitivel a weaker scorin fun tion
because-it ignores the effect

'-:T-...--__.",.-__-;- --'it is formally weaker because of
t e eyman-~Pe8rson Lemma.

IV. EXPECTED VALUE OF THE BAYES FACTOR

FIllh.is pOin~ on the. terms Bayes factor and Bayes score will refer
to the --- _ actor and score, and we set N = T/2. If HI is true,
t\len or each 1 ,; t ,; N, Prob[K., ~ OJ ~ 1/2, so

I~ -
andErS ,fKdJ= 1.

Next suppose tha"tHu is true and let

et _Zt f S· . For 1 ~ t ~ N we say that the pair of sequences

92 1

Iy, I and IZ, i match at t ifI

93
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Some values of M(l,i) are
ill 0 1 2 3 4 8 9 10
0 1
1 0 1
2 0 1 1 P.L. 86-36

3 0 2 2 1
4 0 5 5 3 1
5 0 14 14 9 4 1
6 0 42 42 28 14 5 1
7 0 132 I:J2 90 48 20 6 1
8 0 429 429 297 165 75 27 7 1
9 0 1430 1430 1001 572 275 110 35 8

10 0 4862 4862 3432 2002 1001 429 154 44 1.

The import.nce of the M(I,i) is th.t

1'--- 1(4)
We,prove this by induction on N. The result is trivial for N = o. For
N ~ 1 it becl:::m:::es=--- ----,I
Since the resu""'l""t-c"'le-a-r";"ly"""h-ol"d""s""'f""o-r..,l--N:-:-.-n-d:-:"l-~-....,O,....J,we may assume

1 S l s N - 1 and argue that

Let us count the Q(N,k) pairs of N sequences with k matches in-r""'" '.w., "".n_••

Adding tbese together .nd .pplying (4), we get for k ;" 1

1'---- --
1

1. 4.
1. 4.

(3)

(1)

, we ge a
1 + E[d I, it follows

t hen Pro

BAYES SCORE
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M(O,O) ~ 1
M(O,i) ~ 0

M(l, i) ~ L M(j,i-l).
j _I 1

L(N,k,1) ~ Q(N -1,k,1) for 1 :> I :> N - 1.

____I
We devote the rest of this section to the calculation of the right hand
expression, which we denote by E(N. b).

Let(U, V) ,SN X SN , with U ~ (U" ... , U.) .nd V ~ (V" ... , V.).
Let Q(N,k) ~ number of elements (U, V) with ex.ctly k m.tches, so

the sequences I?, I .nd IZ,I

I ~ec.use L(N,k,N) ~ 0 for k ;" 1, this together with (1)

yieldsll...- -:--__..,...,...__""":"7"....,.,.....,....-::-..,.....,.....,.~
We next define a triangular array of integers. M(l,i), for 0:$ .::; t,

as follows:

'- ---lIN - 1 long sequences. Hence

383m:rg-4DOCID
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(by (3»

= M(l) M(i-l) + ... + M(I) M(i-I)

+ L M(j+l,j+l) M(j+l,i-I)
,---j

~ M(l) M(i-l) + ... + M(I) M(i-l)

+ L M(j+l,j+l) "f M(k,i-l-l)
i_I ._j

~ MO) M(i-l) + ... + M(l) M(i-I)

+ 'I' (± M(j+1,j+l)l M(k,i-l-l)
~-l )_ r 'l

1. 4.
1. 4. (d'i

(5)

BAYES SCORE

or translating into "p" notation

This last formula is also valid only for k > 1. If we g.ive p(O,-h) its
natural interpretationI Iwe can trivially.,m'!',," '"" ,,,",",,_..,.m."." "'''..

383~-DOCID

~ M(I)M(i-l) + ... + M(l)M(i-l)

+ L M(k,l+k)M(k,i-l-l) (by (6».. ,

~ MO) M(i-l) + ... + M(l+l) M(i-l-l)

+ L M(k+l,k+l+l) . M(k+l,i-(l+l).',Iit follows thatl
L- ----'

We next find a closed form expression for M(l,i), which we for nota
tional simplicity refer to as M(i). The M(i) possess a convolution
property

Formula (6) having been verified, it follows that the power series

• M(")
g(x) = 1 + L 2- ,I, x',

i-I ·4

which converges in some open neighborhood about the origin, has the
property that [g(x) f ~ 1 - x, so it follows from the generalized bi
nomial theorem, sinceg(x) = (l_X)li~, that

M(i) ~ L M(j) M(i-j).
;_1

To prove (6), we observe from (3) that

M(l.i) ~ M(l-l,i-l) + M(I+l,i) 1'; I ,; i, i~ 2.
Using this, we can prove by induction that

M(l,i+l) ~ L M(j+U+j) I ~ 1, i ;,. 1.
j-I

Now, by repeated use afthis equation, we get

(6)

(7)

= M(l) M(i-l) + ... + M(i-l) M(l).

M(i) ~ 2(-1)'-' ( 1/2)
4'-1 i (8)

M(i) ~ M(i-l) + L M(j,i-l)
j_2

SFCpH

~ M(l) M(i-l) + L M(j+l,j+l) M(j+l,i-l)
j_l

(since M(j,j) ~ 1)

96 1
Recalling that the aN appearing in (5) had tbe property

I I
97
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For N ~ 1, (10) is clear. Assume it holds for N ~ 1. Then
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(10)

(by (9)

EO 1.4.
EO 1.4. ,'d

(by (9)

F. L.

But-~2Ne~) (_1)N x' ~ -2xI:N( 1~) (_1)' x"

d x
~ -2x d; l vr=xJ ~I _ x so we get that h(x,y) - 1/4xyh(x,y)

+ (...rr=x - 1) (h(x,y) - 1) + 1/4 x h(x,y) - ...;l ~ x is a constant,

which is in fact 1, since the last four summands have a zero constant
term. Solving for h, we ~et that

h(x,y)~ ---,._."...

vT=X (YT=X _ X_~---I~

(by induction hypothesis)

(hy(8).

Combining (5), (8) and (10) we get that, for N ~ 0, h ~ 0

lu,
--------------'

We now let h(x,Y) be the power series in two indeterminants de
fined by h(x,y) ~ I: p(N,h) x N y' (which converges in the region

. (1/2)Ixl<l.yl-').Itfollowsfrom(ll)andthefactthatt:" i (-1)' x'

~ (I-x)'" that

g(x,y) ~ h(x,y) - 1/4 xyh(x,y) + «(1-x)'" - 1) (h(x,y) - 1)

+ 1/4 xh(x,Y) = L gN.~ xN
yk

N.~

has the property that

l+ x(y-Il
4vT"=X

(
y-l) ,

1- x - x~ -4-

(
y-l) 2 X(y-l)

h(x,y) - xh(x,y) - x' -- h(x,y) ~ 1 +..,...--,,== ,
4 4~1-x

Even more important, h(x,b) - I: E(N,b) x' .
N

Let

------------

SECRET 98 99 SEEftl!T
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~ able to estimate the accuracy of the
IWe here prove (13). It is obvious that

Since (l ~Ox) -1 = L: f/" X·..- • comparing coefficients yields

Let us Jook at the facto

we can rewrl e our preVIOUS equatIOn, getting

L-_-~---'-""""'''--------~~~~I:.'''2)~(-_-";-,),1
vergenceort, ( 1;2) (-0,-')' that ~~~ ,-L;-, , •.
= o. Finally, pick some 8:1 With!:. < 9:{ < 82 . Then

0,

the series on the right hand side converges, and since
""0"",-<"""'0-,0"',-,""'l'-im-o-r:'rthe right hand side is O.

N·,oo

E' 1.4. V. VARIANCE OF THE BAYES FACTOR
E 1.4. (d)

Recalling the definition orS .(K), we see thatS:(K) is equal to

I IL...,-W:-:e--::fi-rs-t-t-ak"'e-u-p--:-t"'he-c-as-e-w-h"'e-r-e~H;-;-,7is-t:-r--u-e-.Trnh-en--::ir"'Z'7:a-n":;d-Z:;:':-m=a7tc:'ih:-::"at

I
and otherwise the expected value is 1/4, It follows that the value of

E lS: (K)1is given by

1011

(13)

(14)

100

From (12) it is easy to see that I til the s,ense that the
percentage error goesl0 as N gets large, More IPreCiSelY,

(In section 7 we will prove the stronger result

1_-



We have illustrated. by this argument that the variance of the SCore
when HI is true equals the mean of the score when Ho is true. This
is actually true in general for any score of the form Prob lKIHol /
Prob {K IH,l and can be proved by an elementary argument (see,
e.g., (9)).

Next we do the case where H u is true.!

bound turns out to be useless for the considerations made in the
following section; so the existence of an effective upper bound is still
open.

Recalling tha~ het us calculate more explicitly the means
and variances We have derived for small a. We have
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The authors have been unable to come up with a useful upper bound.

103

VI. SIGMAGE OF THE BAYES SCORE

It has hecome part of the COMSEC folklore that log factors tend to
be normally distributed, especially if scoring rates per bit are constant
and low. For a further discussion of this principle, see [9 J. Throughout

the rest of this section, we assume that S'.~ is normally distributed
when either Ho or Hi is true. We seek the mean and standard devia·
tion in the two cases.

H o true_

meanofS'. D
variance orS'. . upperbound)

since E [ S': (K)] dominates (E [ S' • (K) I)' .

Summarizingtite results of sections 4 and 5 (the reader should check
that the C and o1'corresponding to b' are approximately the same as
those corresponding tob), we get

1102

where q(N,k) is the probahility that three N-long sequences chosen at
random will have exactly k matches. The authors have been unable to
calculate the density function q; the problem seems similar to that
of calculating the function p of chapter IV. but involves three
dimensional arrays rather than the two-dimensional array M(i,j).

Without doing any hard work we can get 8 lower bound on the
variance. Let A be the random variable representing the number of
matches between the first two sequences, B the number of matches
between the first ,81ld third, D the number of matches between the
second and third. A Band Dare identicall distributed but atentl
not independent.

where k is the number of matches among Y, Z and Z' (if the thre,e
sequences latCh at t this counts as three matches), and thUi
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T.Pt. ,,' ,md a' be the mean and standard deviation of S.(. It follows

from the form of the moment generating function of a normal distribu
tion (again, see [9 j) that

(2) The values we have listed in the Bayes column are only lower
bounds for the textlen~th needed within the mathematical model we
have set up, due to the independence assumption which we made at
the end of section V.

(3) The values listed in the Bayes column are accurate only to the
extent to which the error term discussed in the next section is small.

To conclude this section we present tables which give for common
values of a the textlehgth needed to attain certain sigmages using

T~"~

The reader should understand the following reserVations before using
these tables:

Q T textlength needed to attain a certain sigmagel
, ayes score is greater than that needed for the true Bayes

score, ut not more than twice as much.

#EQ 1.4. (c)

i: E';') 1.'4. (d)ln~' = Jl +~1
2

In(.')' ~ 2" + 2.' .

We have seen that H, is true u' - 1 and ..I----~...,[whereas
when H o is truel I Solving/the' sjmul
taneous equation~si;",;;w;;;e:'igi<ier:t:;:========~..."

H. true

For very large T this gives us the"isigmag

section 1. The effec~n'ga po..s.it~lv:::e~n~u::m=::-'·
sigmage greater thaL--J· .

Since there is a constant scoring rate' per bit asymptotically. there
is little advanta e when T is lar e

H o true

104 1
(4) We have assumed that the Bayes score is normally distributed.
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respectively, are similar to tables I and
.....--,TT'.·.."Tn"""'s"'ec=lO"'n,....""...""ltC""::"W"'lT""'I:"'e""'s""own that all entries in our tables are

acc~rate to ±0.1. (that is, the Bayes textlength which we purport to
give"rise to a sigmage of ndoes indeed give rise to a sigrnage of n ±O.l).
Note'that were an entry farllT in the Bayes column computed, it would
have heen a negative textlength; this absurdity can be explained by

":1 the ... et\tbat fur tho to tlon ... h T h' h hO" Ithe property that

VIJ. ACCURACY

We have ',.seen in section IV thatl IWe will prove in
this sectiort th~a!.t ======~_

1------,--....,..----",-_
and in fact get an upper bound for F(N).

We refer to equation (12) in section IV. Since 10, I < 1, it is clear that

We next estimJl.-c------------

1 -
SECRET 106 107 3EERET
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we need only estimate fJ~' RN. We have

lofRN I·~ I
=========;---.J

,,;C=!J-T-h-is-p-r-o-ve-s-t-h-a-t-----------ll(by 16)

Although the series does not converge, by Taylor's theorem with a.mT"~ """ ..;"
where

,

(li = Euler's

;

•

":'~lim~
r(l/2) "" N.. .-,) I decreases as i becomes largerJ so-112

( m)lim
N~'" n

The sequence VNTI I ( 1 - ~) is increasing, since

$(1-~) >~

(:) ~ (-1)" g (1 _m : 1)

In particular

N (-1/2)
l~~_(-1) N

It is clear that I (

..2..... ~ x e" Ii (1 +:'k) e-
t

r(x) •• ,

and taking x = - m -1 it is easily seen that

with Weierstrass's infinite product expansion for the reciprocal of

gamma function

By comparing

Hence,

$+ln' (1-'!'-) ,;
~-l 2k

1

~
by (16),

and thus that

=:::----__1
Next we estimate----------
__------.JI

and

108
By using formula (12) and our previous estimates we can get a more

precise upper bound for F(N), namely:

11-1-09-------J~
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